A glider component for the GOOS

Pierre Testor
LOCEAN, CNRS, Paris, France
EGO: a glider community (sci & tech)

Everyone’s Gliding Observatories
Australia, Canada, Chile, Egypt, EU, Israel, Mexico, Peru, South Africa, USA,… (academy+manufacturers)

• EGO meetings & Glider Schools since 2005; now 100-150 people

• Showcase EGO website http://www.ego-network.org (10,000 unique visitors and 100,000 pageviews per year)

• Coordination (best practise, data management, international experiments)

• OceanObs’09 White Paper Testor et al., 2010

→ need for a glider component in the GOOS, recommendations
 ✓ formation of the global glider system,
 ✓ adoption of best practice, standards and a “Argo” like data system
 ✓ setup of a network of shared resources and expertise,
 ✓ common and accessible portal for glider data.
A global glider network

Challenge: “gliderports” (infrastructures) distributed all around the world

Deployment, piloting, recovery, maintenance, data management and analysis

Coordination
Support from
EGO COST Action
EU FP7 GROOM
National projects

A decade of glider data (2004/09 – now) on the GTS 226243 profiles, 113 platforms
> 200 scientific articles

→ process studies & sustained observing programs (often in conjunction with other platforms)
International framework for sustained glider observations

→ Discussions at JCOMM Obs. Coordination Group meetings (OCG-5 & 6)
→ Formation of international (EGO) Glider Steering Team (GST) and Data Management Team (GDMT). To be approved by JCOMM at next MC.

• ToRs
• Membership and governance
• Monitoring of the network
• Scientific international program
 ➢ Provide unaliased physical and biogeochemical time series in key areas (water formation areas, upwellings, boundary currents, straits, shelves, biogeochemical provinces) and information about the processes
 ➢ Study the links between the regional and global systems, and interconnections

GST
Charitha Pattiaratchi, ANFOG, Australia
Daniel Hayes, OCY, Cyprus
Pierre Testor, CNRS, France
Johannes Karstensen, GEOMAR, Germany
Elena Mauri, OGS, Italy
Peter Haugan, UIB, Norway
Agnieszka Beszczyńska-Moeller, IOPAN, Poland
Simon Ruiz, IMEDEA, Spain
Mark Inall, SAMS, UK
Scott Glenn, Rutgers Univ., USA
Dan Rudnick, SIO, USA
(Brad de Young, Mem. Univ, Canada)
(Seb Swaart, UCT, South Africa)

GDMT
Alessandra Mantovanelli, ANFOG, Australia
Thierry Carval, Ifremer, France
Riccardo Gerin, OGS, Italy
Erik Magnus Bruvik, UiB, Norway
Charles Troupin, SOCIB Spain
Justin Buck, BODC, UK
Derrick Snowden, IOOS/NOAA, USA
Evolution of the GOOS

- Essential Ocean Variables: physical, biogeochemical
- Extension to regional seas and coastal ocean

The present GOOS can be considered to have a resolution of 300km and 10 days (Altimetry/Argo; climate-oriented)

Regional/coastal zones
➔ more societal applications (green, blue growth, …)
Physical and biogeochemical variability at regional scale

Satellite image sea color - surface Chl-a

Need for better characterization of the vertical structure of the ocean (satellites only describe the surface)

- for physical and biogeochemical variables
- and at (sub)mesoscale to avoid erroneous conclusions on regional and coastal areas due to aliasing effects

in situ observations: generally too coarse (time or space) or with poor coverage (duration)

→ gliders cover a wide range of scales and provide a cost-effective solution to fill this gap
Fine description of an upwelling system

100km ~ 5 days

depth-average currents

2008, PE-FR collaboration (IMARPE, CNRS/IRD)
Premise of a long term obs program

Pietri et al (2013)
Sustained observations at the regional scale

→ Synoptic description of provinces
→ Variability indices
The preponderant role of Submesoscale Coherent Vortices

- Numerous SCVs in glider data (good resolution, link space-time-intensity)
- Revisited historical data. Isolated profiles (ships, floats) have been carried out in SCVs...
- Formation process and impacts

→ Major impact on intermediate and deep circulations!
The preponderant role of Submesoscale Coherent Vortices

Glider-enabled science, resolving power
Adaptive sampling and asynchronous fleet coordination

3D view, salinity along the gliders (scouts) trajectories
« Picture » of the Warm Core Cyprus Eddy and its dynamics
Context for biological measurements (Tara-Océans - genomics)
Conclusions

Gliders can

• be operated in strong conditions (weather, currents, ice) and maintained in regions of interest
• make high resolution physical and biogeochemical measurements over long periods of time/distances
• make us enter a new era in oceanography (like “scalpels” or “Galileo’s telescopes”)

→ Gliders are great tools for long term observations and process studies of physical and biogeochemical variability/coupling at large, meso, and submesoscale, able to fill gaps left by the other observing components

→ The glider community is well organized but needs high-level support for
 • carrying out sustained observations
 • further developing observational capacities (>100 gliders on a process study!!)
 • enabling more societal applications (directly from glider data and/or through ocean analyses/forecasts with data assimilation)
Thank you for your attention

Спасибо за внимание

Muchas gracias por su atención

Danke für Ihre Aufmerksamkeit

Merci de votre attention